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In order to further understand phenomena observed dur- 
ing studies of adiabatic excitation of lon&tudinai bunch shape 
oscillations (11, we have developed a simple simulation using 
a one-turn map. In this report we will present the physical 
foundations for the simulation and the methods used in the 
simulator. We will present simulations using parameters of 
actual experiments, along with the corresponding experimen- 
tal results. 

I. INTRODUCTION 

In reference [l] it was shown that by exciting longitu- 
dinal bunch shape oscillations adiabatically, longitudinal 
emittance can be preserved. In this report we will present 
data collected over multiple regimes of longitudinal para- 
metric resonances and simulation results corresponding 
to that data. We developed a simple simulation which 
allows us to precisely probe the behavior of the particles 
even under extreme conditions. 

The physical foundations for the simulation are given 
in the discrete synchrotron equations fa’r a stationary 
bucket, in which the amplitude of the rf voltage is mod- 
ulated. The synchrotron motion cau be described us- 
ing the conjugate phase space coordinates (4,6 = 2 9) 

where 4 is the particle phase relative to the synchronous 
particle, h the harmonic number, q = $ .- $ the phase 

slip factor, V, the synchrotron tune at zero amplitude 
without modulation and p the particle momentum. The - 
synchrotron tune is given by vs = 

ra 
$$ev with e be- 

ing the elementary charge, V the gap voltage, B the rel- 
ativistic factor and E the particle energy. The discrete 
synchrotron equations for a stationary budket above tran- 
sition can then be written as [8,9] 

Q n+1 = 4% + 27w5,+1 (1) 

6 n+l = 6, + 27rv,[l+ e sin(V,B,+l + x)] sin & 

where E is the amplitude of rf voltage modulation, vrn is 
the modulation tune, x the initial modulation phase and 
the orbital angle 0 a timelike variable. Equations (1) 
correspond to the Hamiltonian 

H = fp2 + Vs[l + e Sin(V,8 f x)][l - cos 41. (2) 

The canonical transformation for particles within a 
bucket 4 = ~COS$J, 6 = -flsin $J t,o action-angle 
variables (J, d), allows going into a rotating coordinate 
frame. To go into a coordinate system that rotates 
ardund the origin with half the modulation tune we use 
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the canonical transformation J = ,f, 4 = II, - %fB - F. 
The new Hamiltonian has terms oscillating at vm,2v,,,,... 
which average to zero over time and the time averaged 
Hamiltonian in this coordinate system is [7] 

(H) = (V, - F)j - 2”’ + +os2?& (3) 

Sinc:e J = j we use J instead of .? in the following. 
The investigation of fixed points of the Hamiltonian (3) 

leads to the following result: 

(a) 

(6) 

Cc) 

If ~~(2 + 5) < V, =+ The origin J = 0 is the only 
f?xed point, a stable one. 

If V,(2 - 5) < Vm < ~~(2 + f) + There is one 
unstable fixed point at the origin and t_wo stable 
fixedpointsat J=8(1-$?)+2cand$~=O,7r. 

If V, < ~~(2 - 6) =+ There is a stable f?xed point 
at the origin, two m-ore stable fixed points at J = 
8(1- 2) + 2~ and $J = 0, x and two unstable fixed 

points at J = 8(1- 2) - 26 and 4 = :, B. 

The three cases are illustrated in figure 1 where we used 
the approximation (3) and the parameters V, = 0.0005 
and E = 0.45. Part (al) shows the situation with 
u ‘= 0.0018 above and far away from the resonance in- 
t&al [vd(2 - f), ~~(2 + $)I. The phase space trajectc+ 
ries are undisturbed. In part (~2) the modulation tune 

urn = 0.0011 is still above but close to the resonance 
intexal. The trajectories in phase space are distorted. 
Part (b) shows the phase space with v,,, = 0.001 inside 
the resonance interval. The unstable fixed point at the 
origin and the two stable fixed points are clearly visible. 
In part (cl) the modulation tune v,,, = 0.00087 is be- 
low but close to the resonance interval. The appearance 
of a stable fixed point at the origin and two unstable 
fixed points above and below it becomes visible. Part 
(~2) shows the phase space with V, = 0.0008 below and 
farther away from the resonance interval. 

U’hen the amplitude of the modulation is large, then 
the ,approximations of the Hamiltonian (3) are no longer 
valid. To study these conditions we return to the Hamil- 
tonian (2) and track individual particles. 

II. :SIMULATION OF LONGITUDINAL MOTION 
WITH MODULATED FOCUSING STRENGTH 

We used the one-turn map (1) to simulate the behav- 
ior of many particles while incrementing the amplitude 
slowly over many revolution periods. The simulator did 
not need to include beam loading effects on the rf volt- 
age ,since the modulation frequencies fall well within the 



bandwidth of the AGS rf automatic gain control loop. 
With loop gains of 17 dB and greater the system does a 
very good job at compensation, reducing to better than 
1 % any beam loading distortion [2] [3]. The simuia- 
tor did not include space charge effects either, since in 
the AGS the longitudinal impedances are Ismall. Even at 
the relatively high intensities and short bunch widths we 
worked with in our experiments, the space charge effects 
remain insignificant. To illustrate this, consider the ratio 

of the induced voltage change s = %nZt % & from 
tf- 

space charge to the $$ = V,,rhu~ of the AGS rf system. 

Given wg is about 2.4 x lOs, z =: 6R, and V,f . h varies 
from 6 x 20,000 to 6 x 200,000, then for a beam intensity 
of 5 x 10” protons per bunch in a it = 50 ns bunch this 
ratio varies from about 2 x 10m2 to 2 x lo-“, respectively. 
From this we conclude that the shift in synchrotron fre- 
quency is insignificant [4] [5]. 

The simulator is composed of fewer thatn 500 lines of 
C++ code and was developed and debuggeld very quickly. 
Individual particles are tracked for many revolutions us- 
ing a set of nested loops. First we define the particle dis- 
tribution in phase space, then for each particle we track 
over a given number of modulation periods and for the 
number of revolutions per modulat,ion period. We can ei- 
ther print out particles coordinates in phase space every 
modulation period to get the surface of sections of the 
Hamiltonian (2), or just print out the final coordinates 
after the given total number of revolutions. We can gen- 
erate a Gaussian or uniform beam distribution. We also 
include code for generating mountain range plots, for di- 
rect comparison to actual data. The simulator used well 
know techniques and algorithms. For example, to gener- 
ate a Gaussian distribution we did. the following. 

void getrpart(double mphi. double mdp, 
double* rphi, double* rdp:l 

c 
double 
double 
double 

raudth. randphi; 

phi. dp; 
pi=4.O*atan(l.O); 

// lrand48 returus a unsigned int 
// between 0 and 2-31 
randth= (double) (lraud48 0 /2147483647.0) ; 
randphi= (double) (lrand48 0 /2147483647.0) ; 

// transform the uniform distribution to 
// a gaussian distribution 
phi=O.S*mphi*sqrt(-2*log(raudphi)); 
dp =O.Stip l sqrt(-2*log(randphi)) ; 
phi=phi*cos(2.O*pi*randth); 
dp =dp *sin(2.O*pi+raudth); 

memcpytrphi, &phi, sizeof(double)); 
memcpy(rdp. &dp, sizeof(double)); 
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The application does not generate any graphics, but 
simply dumps results into files. We use the xmgr 
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[ACE/gr [ll]] plotting package to display our results. 
The user interface is a file input which specifies the syn- 

chrotron tune, the modulation tune, the modulation, am- 
plitude, the number of revolutions per modulation pe- 
riod, the number of modulation periods to sample over, 
and the number of revolutions to ramp the amplitude. 
Also specified are various other parameters to control 
which distribution to use (including a random seed value 
for generating the Gaussian distribution) and to control 
the mountain range output. 

Using the parameters of figure 1 we mapped out par- 
ticle trajectories of a surface of a section of the Hamil- 
tonian (2) using the one- turn map (l)? The results are 
shown in figure 2. Clearly the simplified Hamiltonian 
used to generate the trajectories shown in figure 1 is only 
valid for small amplitude oscillations when the modula- 
tion tune is well above twice the synchrotron tune or 
when the modulation amplitude is small. The trajecto- 
ries in regime (c) of figure 2 show that chaotic motion 
exists in the regions which figure 1 (c) suggests to be 
stable regions. Note that the axis labels in figure 2 are 
changed to reflect the canonical phase space variables, 4 
and B = 2 9, as opposed to the rotating frame action 

angle variables, 4 = acosq and b = -msinq, used 
in figure 1. 

III. COMPARING SIMULATION RESULTS TO 
EXPERIMENTAL RESULTS 

We operated Brookhaven’s Alternating Gradient Syn- 
chrotron (AGS) with one bunch of a high intensity proton 
beam at 24 GeV, with a harmonic number of 6 and an 
rms bunch area of 4 eV. s. The un-modulated gap volt- 
age seen by the beam was 100 kV. These parameters are 
summarized in Tab. I. 

In [l] we describe the experimental conditions for our 
experiments. To summarize, we modulated the AGS rf 
volta,ge using a wave form generator that generated a 
voltage which was added to the gap voltage setting in 
the low level rf. The combined signal was the input to 
the rf high level voltage regulation system. In our ex- 
periments we slowly increased the parameter E in (1) to 
ensure adiabaticity. 

We took four sample cases from our experiments and 
ran simulations using the same parameters. The four 
cases are (in all cases ~,=0.00022 and e=0.8): 
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(b) 

Cc) 

Modulation tune is slightly below twice the syn- 
chrotron tune, v,=O.O00404. All the beam was 
lost. 

Modulation tune is above but close to twice the 
synchrotron tune, ~,,,=0.000472. We observed slow 
beam loss and emittance growth. 

Modulation tune is above and further away from 
twice the synchrotron tune, u,=O.O00499. We ob- 
served no beam loss and no emittance growth. 



(d) Modulation tune is well above twice the syn- 
chrotron tune, v,=O.O00553. 

Figure 3 shows simulated particle trajectories in sur- 
face of sections of the Hamiltonian (2) ?or the above 4 
cases. Figure 4 shows results of tracking: 50,000 parti- 
cles initially distributed in a Gaussian distribution. The 
modulation amplitude is increased from 0 to 0.8 in 10 
synchrotron periods. We used the same synchrotron and 
modulation tunes as in figure 3. In (a) we show the phase 
space before the modulation has reached full amplitude, 
since particles are lost very quickly. Also note that the 
scales on (a) show a larger region of phase space than 
used for (b) through (d). In (b) through (d) we show 
the phase space well after reaching full modulation am- 
plitude. Each figure shows a profile of the initial distri- 
bution as well as a profile of the final distribution. 

Figure 5 shows the measured mountain range plots 
for these four cases. Figure 6 shows simulated moun- 
tain ranges, using 50,000 particles, for each of the above 
cases. These simulation results agree very well with the 
measured mountain range plots shown in figure 5. We at- 
tribute the small remaining discrepancies to a mis-match 
in the initial distributions. 

IV. SUMMARY 

Our simulations of adiabatic excitation of longitudinal 
parametric resonances match experimentally obtained 
data extremely well over different parameter regimes. 
Thus the one-turn map (1) that is used in the simulation 
and includes only single particle effects, is an accurate 
model for the parameter regimes of our ex]periments. 
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TABLE I. Basic parameters in the AGS experiment. 

Parameter Svmbol Unit Value 

Species 
Energy 
Harm.onic number 
Number of bunches 
Particles per bunch 
RMS bunch area 
Slip f,actor 
Gap voltage 
Synchrotron tune 

- - P 
E GeV 24 

h - 6 
- 

- 
eV. s 

V 
- 

5 x 110’2 
4 

0.0122 
100 

0.00022 
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FIG. I. Simulated Particle trajectories in a surface of section of the Hamiltonian (3) with the parameters vs = 0.0005 and 
c = 0.45. In part (ai) the modulation tune v,,, 
part (02) it is still above but with v 

= 0.0018 is above and far away from the parametric resonance interval, in 
rT, = 0.0011 close to this interval. Part (5) shows the situation with v,,, = 0.001, when the 

parametric resonance is excited. Parts (cl) and (CZ) depict the cases with vrn = 0.00087 and v,,, = 0.0008 respectively when 
the modulation tune is below the parametric resonance and either close or far away from that interval. 
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FIG. 2. Simulated Particle trajectories in a surface of section of the Hamiltonian (2) with the same parameters as given in 
figure 1. Note that the axis labels are changed to reflect the canonical phase space variables, 4 and 6 = 29, as opposed to 

the rotating frame action angle variables, q5 = mws4 and 6 = -&7~ind, that were used in figure 1. 
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FIG. 3. Simulated Particle trajectories in 
(b)modulation tune 0.000472, (c) modulation: 
modulation amplitude of c = 0.8. 
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a surface of section of the Hamiltonian (2). (a) modulation tune 0.000404, 
tune 0.000499, and (d) modulation tune 0.000553. All cases are driven with a 
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FIG. 4. l’kacking simulations starting with C50,000 particles in a Gaussian distribution and using the same parameters as in 
figure 3. In all cases the parameter c is rampeld horn 0 to 0.8 in 10 synchrotron periods. 
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FIG. 5. Measurements of driven bunch shape oscillations for different modulation frequencies, as seen on a wall current 
monitor. (a) modulation tune 0.000404, (b) modulation tune 0.000472, (c) modulation tune 0.000499, and (d) modulation tune 
0.000553. In all cases the parameter c is rampsed from 0 to 0.8 in 10 synchrotron periods. 
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FIG. 6. Simulated Mountain range results of tracking 50,000 particles for each of the cases shown in figures 3, 4, and 5 
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